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A B S T R A C T

Hazards potentially affect the safety of people on construction sites include falls from heights (FFH), trench and
scaffold collapse, electric shock and arc flash/arc blast, and failure to use proper personal protective equipment.
Such hazards are significant contributors to accidents and fatalities. Computer vision has been used to auto-
matically detect safety hazards to assist with the mitigation of accidents and fatalities. However, as safety
regulations are subject to change and become more stringent prevailing computer vision approaches will become
obsolete as they are unable to accommodate the adjustments that are made to practice. This paper integrates
computer vision algorithms with ontology models to develop a knowledge graph that can automatically and
accurately recognise hazards while adhering to safety regulations, even when they are subjected to change. Our
developed knowledge graph consists of: (1) an ontological model for hazards: (2) knowledge extraction; and (3)
knowledge inference for hazard identification. We focus on the detection of hazards associated with FFH as an
example to illustrate our proposed approach. We also demonstrate that our approach can successfully detect FFH
hazards in varying contexts from images.

1. Introduction

Over 60,000 fatal injuries are reported to occur every year from
construction projects worldwide [40]. According to the Occupation
Safety and Health Administration (OSHA), for example, the construc-
tion industry is responsible for more than 20% of fatalities in the United
States [45]. In the United Kingdom, for example, a similar scenario
occurs where construction accounts for the highest number of fatalities
across all sectors [15].

Typically hazard analysis is undertaken before construction and
may be performed using manual methods and/or three-dimensional
(3D) models [24,43]. Hazards can change once construction com-
mences, and their identification then needs to be undertaken manually,
which can be a labour-intensive and time-consuming process. Several
automatic computer vision-based approaches have been developed to
overcome the drawbacks of manually identifying hazards [18–22,53].

Despite the success of being able to deploy computer vision to
identify hazards, it is unable to recognise those that are newly defined

as a result of changes to safety regulations and procedures as: (1) ty-
pically one computer vision algorithm is used to identify a single hazard
in a scene. For example, identifying a person who is not wearing their
safety helmet; and (2) current computer vision approaches are unable
to extract semantic relationships between detected objects. As a result,
a ‘semantic gap’ is formed between the low-level features extracted
from images and the high-level semantic information that people ob-
tain.

This paper combines computer vision algorithms with ontology to
construct a knowledge graph that can automatically detect hazards to
address the ‘semantic gap’ that prevails. We aim to determine whether
our as-built semantic vision-based knowledge graph can identify ha-
zards with complex rules. In doing so, we develop a knowledge graph
that integrates computer-vision with ontology. An ontology is used to
help experts annotate knowledge and is used to describe the relation-
ships between the entities. Describing these relationships enables
computer applications to represent and reason about safety knowledge
efficiently. When an ontology is used in conjunction wit0068 computer
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vision, knowledge can be extracted (i.e., entity recognition and re-
lationship extraction) from images automatically.

We commence our paper by providing a review of computer vision-
based object detection approaches and applications of ontology-based
risk management that have been developed in construction (Section 2).
Then, we introduce and describe our proposed knowledge graph fra-
mework for identifying hazards (Section 3). Following a description of
the developed framework, we then demonstrate and test the validity of
our developed framework using hazards identified during the con-
struction of the Wuhan Rail Transit System in China (Section 4). Next,
we discuss our research findings, specifically highlighting the benefits
and limitations of our framework. We conclude our paper by identifying
the paper's contributions to the field of computer vision in construction.

2. Research methodology

2.1. Computer vision-based object detection

Computer vision has been utilised to perform a variety of tasks in
construction such as productivity analysis [23], progress monitoring
[26], as well as the recognition of unsafe behaviour [9,18,20]. Vision-
based object detection within the domain of construction has focused
on utilising the following approaches: (1) hand-crafted features; and (2)
deep learning. In Table 1, we present a summary of critical vision-based
object detection studies that have been undertaken.

Hand-crafted feature-based methods employ a three-stage proce-
dure, which consists of: (1) feature extraction; (2) feature representa-
tion; and (3) classification. Descriptors typically used to extract features
from images and videos include Histogram of Oriented Gradients
(HOG) [7], Histogram of Optical Flow (HOF) [48], and Scale Invariant
Feature Transform (SIFT) [41]. Once features are extracted, they are
then inserted into a classifier such as Support Vector Machine (SVM)
and k-Nearest Neighbour. There exists a considerable body of work that
has used hand-crafted feature approaches to detect objects in con-
struction.

Chi and Caldas [5], for example, applied a background subtraction
algorithm to extract features from images. Then, using a naïve Bayes
classifier and neural network, people, loaders, and backhoes were
identified [5]. Contrastingly, Park and Brilakis [46] and Azar and
McCabe [2] have utilised HOG and Haar-like feature descriptors to
detect individuals and equipment (e.g., machinery). Similarly, Mem-
arzadeh [3] combined a HOG and colour features with new multiple
binary SVM classifiers to automatically detect and distinguish between
a person and equipment using videos. Despite the success of hand-
crafted feature-based approaches, they are manually created. There-
fore, there is a trade-off between detection accuracy and computational
efficiency (i.e., speed) arises [44]. The uncertainties and changing
conditions that prevail on a construction site can also impact the ex-
traction of features from images. For example, view-point scale, in-
traclass and variance as well background clutter can lead to lower levels
of accuracy for object detection [30,47].

With the advent of large-scale data sets such as ImageNet [8], im-
proved designs for modelling and training deep networks, and the de-
velopment of computer architectures, deep learning has provided the
ability to automatically extract and learn features in an end to end
manner from images with higher levels of accuracy [36]. A

Convolutional Neural Network (CNN) can be used for object detection
or action recognition and can automatically extract features due to their
ability to stack multiple convolutional (i.e., detects local conjunctions
of features from the previous layer) and pooling layers [36].

Several studies have demonstrated the potential of CNN's for object
detection and action recognition on construction sites [19,21,22,52].
For example, Fang et al. [19] developed an improved Faster R-CNN to
identify objects from images and have achieved accuracy with 91% and
95% when detecting individuals and excavators, respectively [19].
Likewise, Fang et al. [20] applied a computer vision approach with
Mask Region-Based CNN (Mask R-CNN) to identify the unsafe beha-
viour of individuals that traversed structural supports. In this research,
a Mask R-CNN was used to accurately identify people and structural
supports, which achieved satisfactory levels of performance [20].

A review of computer vision-based studies in construction reveals
that acceptable levels of accuracy (i.e., precision, recall) on object de-
tection and attributes (e.g., distance measure) exist. For example, Kim
et al. [33] applied a transformation matrix to determine the distance
between objects from a single image. Here Kim et al. [33] applied a
transformation matrix to represent the geometric relationship between
objects. The distance between objects was estimated by measuring the
pixel distance between them where an object's reference geometric was
known and used [34]. Drawing on the research of Fang et al. [20], we
can observe that a Mask R-CNN is a suitable approach to detect objects
from two-dimensional (2D) images, and the production of a transfor-
mation matrix [33–35] is appropriate for computing an object's dis-
tance from a single image.

2.2. Ontology-based risk knowledge management

Ontology is a formal conceptualisation of knowledge. It is a sim-
plified view of a domain that describes objects, concepts, and re-
lationships between them [14]. Traditional ontology relies on the ex-
periences of the individual, knowledge of domain experts, and relevant
managerial personnel to support the decision-making process. Semantic
Web technology, for example, can allow various sources of information
to be made available in a format that can be searched and retrieved
from the Internet [17]. Thus, the combination of semantic web tech-
nology with ontology can enable the following advantages to be rea-
lised [10,17]:

• improved model flexibility, enabling the extension of knowledge,
which can be readily changed and adapted by application require-
ments;

• robust semantic representation, and promotion of the semantical
interaction between different computers; and

• support semantic inference and retrieval through improving re-
quests from a concept level.

Ontology-based approaches have been extensively applied to nu-
merous aspects of construction [1,4,6,16,28,49], such as energy man-
agement [6,28], building cost estimation [37] and risk management
[54]. For example, Jia and Issa [29] proposed a synthesised metho-
dology for taxonomy development in the domain of contractual se-
mantics to support the development of an ontology model. Similarly,
Wang et al. [50] used ontology technology to structure knowledge, such

Table 1
Key object detection studies.

Authors (Year) Target of interest Visual object detection methods Type of detection approach

Kim et al. [32] Concrete mixer truck Three-dimensional (3D) Reconstruction and HOG Hand-crafted feature
Fang et al. [18] People, Safety harness Faster R-CNN Deep learning
Fang et al. [19] People, Excavator Improved Faster R-CNN Deep learning
Azar and Mccabe [2] Hydraulic excavator HOG Hand-crafted feature
Park and Brilakis [46] People Background subtraction, HOG, HSV colour histogram Hand-crafted feature
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as activities, job steps, and hazards, to form a Job Hazard Analysis
(JHA) database, and then developed the ontological reasoning me-
chanism to determine safety rules. The studies, as mentioned earlier,
demonstrate the potential of ontology technology in supporting risk
management, primarily as it can be used to raise the level of safety
awareness. By organising knowledge as a logical semantic expression, it
can be shared using ontology technologies and therefore enable se-
mantic interoperability. As a result, the structured and unified knowl-
edge in the ontology can be understood and readily operated by dif-
ferent parties and computer applications and thus ensure the re-use and
promotion of knowledge. To the best of our knowledge, however, there
has been no research that has integrated computer vision with ontology
to identify hazards on construction sites.

3. Knowledge graph framework for hazard identification

In Fig. 1, we present the workflow for implementing our proposed
knowledge graph framework, which comprises three steps:

1. Ontology modelling: Engineering documents, historical accident re-
ports, experts' experience, and safety codes are used to create a
hazard taxonomy is constructed, which contains both the speciali-
sation and relations between entities.

2. Knowledge extraction: Computer vision approaches are used to au-
tomatically detect a set of entities and attributes, using the data
derived from step one. In doing so, object types and their attributes
(i.e., geometric, coordinates in images) are identified so that they
can be stored in Neo4j for reasoning and querying. After identifying
objects and their attributes, an intersection over union (IoU) is used
to extract the spatial relationships between objects (i.e., within,
away, or overlap) by using geometric and spatial features. Here, the
relationships between objects for hazards are defined in step one

using the hazard taxonomy that is established.

3. Knowledge inference: A reasoning model for hazard identification was
developed using the Neo4j database to create nodes, relationships,
and their properties for modelling. The Neo4j database stores and
records all types of objects, their attributes, and the relationship of
objects, which were obtained from step two. Thus, hazards in the
images are automatically identified by querying the created Neo4j
database.

Each of these steps is examined in further detail below.

3.1. Ontology modelling

The initial process for implementing our semantic computer vision-
based hazard identification model was to develop an ontology of a
construction site. The ontology was developed using the Graph
Database Language instead of the traditional RDF mapping models. The
Chinese code for ‘Quality and Safety Inspection Guide of Urban Rail
Transit Engineering,’ for example, was selected as a point of reference
to examine hazards that were incurred during the construction of a
metro-rail project in Wuhan, China. In our ontological model, the in-
formation is categorised into seven classes: (1) thing; (2) part; (3) at-
tribute; (4) time; (5) space; (6) event; and (7) attribute-value. Within
the context of construction, a hazard can be defined by its given time
and space, and entities (with specific attributes), which perform certain
activities [11,13,25]. Thus, a hazard event consists of semantic in-
formation that specifies its:

1. Entity: The entities that are the objective existence. In this research,
the entities are classified into four categories: (1) people; (2)
equipment; (3) materials: and (4) environment. An example of

Hazard 
Identification

Step 1 Step 2
Ontology 
Modeling

Step 3

• Knowledge base 
domain taxonomy

• Expert experience
• Safety codes

• Named entity 
recognition

• Attributes extraction
• Relations extraction

• Graph data modeling 
(i.e., Neo4j)

• Data store
• Hazard query

Knowledge 
Extraction

Knowledge 
Inference

Fig. 1. The workflow of the proposed hybrid semantic computer vision approach.

Entities

People Equipment Materials Environment

Worker 1

Worker 2

……

Worker n

Excavator

Crane

……

Concrete Mixer

Structural Support

Safety Harness

……

Scaffold

Foundation Pit

Platform

……

Aerial Work

Fig. 2. Examples of the entities in the ontology model.
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taxonomy entities is presented in Fig. 2.
2. Activity: A change that is caused by a hazard, such as its attributes,

states, and relations, which contain static and dynamic subclasses.
For example, “more than two workers standing in a basket”. Here,
“standing” represents the activity.

3. Location: Specific location and the interface with concepts, such as
working “in height”.

4. Time: The specific time involved with hazards, such as their duration
on a timeline.

5. Attribute: Specific description of properties. For example, distance,
colour, height, and speed.

Examples of the entities in the ontology model is shown in Fig. 2.
Fig. 3 shows an example relationship – ‘Spatial relationship’ be-

tween entities. The relationship exists between people, between people
and a safety helmet, and between people and machinery. The model
will be able to answer the following queries:

• Who is behind ‘John’

• Is there anyone who stands close to ‘John’ not wearing a safety
helmet?

• Who is driving the excavator?

• Is there any worker stands outside of the excavator driver's view
range?

3.2. Knowledge extraction

Knowledge extraction is a vital step in the construction of a
knowledge graph, which includes the detection of and relationship
between entities.

3.2.1. Computer vision-based entity detection
The aim of our research is to develop a computer vision approach

that can be used to identify and warn people of the likelihood of ha-
zards. For example, if a person is entering an area where a machinery is
present, regardless if it is moving or static, our model, will identify the
action as being ‘unsafe’. Our research solely considers the extraction of
attributes by using a computer vision approach, which was used to
explore the development of a knowledge graph. To this end, we use
computer vision to determine contextual information from a construc-
tion site by:

• Entity Recognition: As shown in Fig. 2, entities can be divided into

four types of objects: (1) people; (2) equipment; (3) materials; and
(4) environment. In this research, two detection approaches are
used: (1) object; and (2) scene recognition. Here, object detection is
used to identify people, equipment (i.e., excavator), and materials
(e.g., structural support). The scene recognition approach, one of the
hallmark tasks of computer vision, enables us to define a context for
given object recognition. The Mask R-CNN developed by He et al.
[27] adopts a two-stage procedure whereby:

1. Images are taken as input for the ResNet network to obtain feature
maps. Then candidates of object bounding boxes are obtained by
using the Region Proposal Network (RPN); and

2. RoiAlign is used to preserve and extract spatial locations from each
candidate box and perform classification, bounding box regression,
and mask generation.

The Mask R-CNN has achieved higher levels of detection accuracy
for objects, than other approaches [27]. With this in mind, we adopted
the Mask R-CNN in our research for entity (i.e., people, equipment)
detection. We assume that this approach can be expanded to identify
several types of objects (i.e., people, equipment, materials) in con-
struction through a process of training. Specific details about the Mask
R-CNN can be found in Fang et al. [20].

To understand and accurately recognise scenes (e.g., people
working at a height), a Unified Perceptual Parsing approach (UPP)
based on a feature pyramid network (FPN) is used to segment concepts
from images effectively. The UPP approach was developed by Xiao et al.
[51] and can infer and discover rich visual knowledge from images. The
UPP performs better than prevailing state-of-the-art machine learning
tools that can be used for segmentation (e.g., fully convolutional net-
work (FCN), SegNet, and DilatedNet). A detailed description of the UPP
can be found in Xiao et al. [51].

• Attributes Extraction: As our research focuses on identifying hazards
based on distance and spatial features, as we only need to extract
two types of attributes: (1) the coordinates of each object in the
image; and (2) distance among objects detected by Mask R-CNN.
We, therefore, utilised the transformation matrix [33] within our
hybrid semantic computer vision model to compute distances be-
tween objects.`

3.2.2. Extraction of spatial-relationships from images
After identifying the types of objects and their attributes, three

People:
John

Safety
Helmet

Sp
at

ia
lR

el
at

io
ns

hi
p

People:
Alex

Excava
tor

Spatial Relationship

Spatial Relationship

Distance: number
Topological Relationship: string Height: number

Position: matrix
BoundingBox: matrix

Trade: string

Mode: string
Position: matrix

BoundingBox: matrix

Distance: number
Topological Relationship: string

Distance: number
Topological Relationship: string

Height: number
Position: matrix

BoundingBox: matrix
Trade: string

Fig. 3. Examples of the entity relationships in the ontology model.
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spatial relationships between them can be computed: (1) within; (2)
overlap; and (3) away. An example of a spatial relationship is presented
in Fig. 4. In this research, the choice of terminology and semantics for
the spatial relationships is based on the distance between objects (i.e.,
between two geometries A and B) and rules specified by Chinese safety
codes.

The spatial relationship between object A and object B is defined as
the IoU of the bounding box A and B, as shown in Eq. (1):

= =
⎧
⎨
⎩

IoU A B area A area B
area A area B

within
overlap
away

( , ) ( ) ( )
min{ ( ), ( )}

1
[0, 1]

0 (1)

For the conditions of within and overlap, we can use the IoU to
identify the spatial relationships between objects. If the IoU of two
objects is 0, we then compute the distance between them by using the
transformation matrix approach. Fig. 5 presents an example of a spatial
relationship using the IoU and where distance are extracted.

3.3. Knowledge inference for hazard identification with graph database

We use a graph database to present the knowledge needed to infer
hazards in a highly accessible way. A graph structure is used to re-
present semantic queries with nodes, relationships and properties, and
store data. Due to its ability to present data in a robust and scalable
way, we use the Neo4j graph database management system so that
queries with multiple relationships can be identified [12,31]. To auto-
matically identify hazards, we perform the following tasks: (1) data
modelling; and (2) automated reasoning and query.

3.3.1. Data modelling
The procedure to extract object classes and their spatial relation-

ships have been described above. The outputs from these procedures
are saved as a ‘.csv’ file and loaded into the Neo4j database. The Neo4j
database automatically processes the data and then provides an output.
An example of the detection output is presented in Fig. 6.

3.3.2. Automated reasoning and query
The final step of the modelling process is to identify hazards by

querying the unsafe behaviour rules that had been defined in the model.
The as-built graph database is constructed based on the objects and
their spatial relationship; unsafe rules are derived from the safety codes,
which were re-defined as queries. An unsafe behaviour, for example,
occurs when “people stand on machinery when hoisting”. Then, we can
identify the unsafe behaviour by searching for the people (i.e. worker)
“whose bounding box is within a machinery's bounding box”. Fig. 7
shows that an unsafe condition, in which a person is standing in a
machine paw, is identified by using the rule: “MATCH (x:worker) –
[r:overlap] – (y:equipment) RETURN x,r,y”.

4. Case study

To demonstrate and test the validity of our developed semantic
model, we can focus on identifying the unsafe condition that may lead
to FFH (Table 2). We have selected an urban metro system under
construction in Wuhan China to evaluate the effectiveness of detection
for the developed semantic approach. Working in collaboration with a
contractor who is involved with constructing the metro system in
Wuhan (China) we were provided safety data from nearly 120 sites and

A B
A

B

A

yawA)c(palrevO)b(nihtiW)a(

B

Fig. 4. Examples of spatial relationship.

Example A: IoU(Person A,
construction basket)=0.135037

Example B: IoU(Person B,
construction basket)=0.16182

(a) (b)

(c)

Fig. 5. Extraction of spatial relationship.
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images from a Web-based safety hazard management system that had
been installed on their sites. In sum, we had access to more than 3000
safety hazard reports and over 40,000 related images (Fig. 8).

The Web-based safety hazard management system contains in-
formation about hazards, which includes their references, location,
categories, description and actions required. An example of the iden-
tified hazard is shown in Fig. 8. We specifically examine FFH as they
account for a high proportion (over 30%) of fatalities in construction
[39,42]. By being able to detect of FFH hazards and mitigate their

adverse consequences, we can make headway toward reducing safety
incidents [38]. To validate our approach, we focus on identifying six
types of unsafe behaviour that were selected from the safety hazard
reports (Table 2).

4.1. Development of ontology for FFH

A taxonomy of hazards related to FFH was developed based on the
checklist in Table 2. The core concepts identified are analysed and

(a) Computer Vision detection (b) Output information from computer vision system

(c) Data modelling with Neo4j

Label Name Relationship Label A Name A

Material Safety hardhat A Within people Worker A

Material Safety hardhat A none people Worker B

Material Safety hardhat B none people Worker A

Material Safety hardhat B within people Worker B

Material Worker A overlap equipmen
t

Construction 
basket A

Material Worker B overlap equipmen
t

Construction 
basket A

Person B

Safety
hardhat B

Person A

Safety
hardhat A

Construction 
basket A

within

within

overlapoverlap

none

none

Fig. 6. An example of computer vision detection results and the output information.

Fig. 7. The reasoning of unsafe conditions by querying in the graph database.
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classified, which can be seen in Table 3 and serve as an extension to the
taxonomy.

4.2. Hazard identification results

We initially used computer vision to detect objects and their attri-
butes with individuals, structural supports, and the foundation pit, as
identified in Fig. 8. The spatial relationships between objects are re-
cognised using the IoU and determining the distance between them. As
previously mentioned, the results are stored in the Neo4j database to
identify unsafe conditions using rule the “MATCH (x: labourer)-[r:
touch]-(y: structure) RETURN x,r,y” (Fig. 9e).

The performance of our research results is based on two aspects: (1)
entity detection; and (2) attributes detection. The preicison and recall
are selected as a key evaluation metric for object detection. Our de-
veloped object detection approach is based on the previous work of
Fang et al. (2019). Also, two key evaluation metrics are used for scene
recognition: (1) pixel accuracy (PA); and (2) mean IoU (mIoU). The
applied UPP achieved mIoU and PA of 41.22 and 79.98 on ADE20K
dataset, respectively [51].

The performance of attributes detection relies on the extraction of
coordinates and the computation of distance from images. Previous
studies have demonstrated that the transformation matrix can be used
for distance computation for objects [33–35]. Based on these perfor-
mance metrics, our developed semantic computer vision approach
achieves an acceptable level of accuracy for identifying unsafe

behaviour.

5. Discussion

To improve the efficiency and effectiveness of the safety inspection
process and mitigate unsafe behaviour that occurs on construction sites,
a semantic computer vision-based approach that integrates computer
vision algorithms with ontologies was developed to identify hazards
from images automatically. This approach provides site management
with a mechanism to proactively identify, record, and analyze unsafe
behaviours and therefore enable appropriate action to be undertaken to
reduce and mitigate the likelihood of FFH. It can also be used for safety
intervention by site management as a means to highlight potential
hazards and the possible consequences that may materialize from
peoples unsafe actions. If people are made aware that their actions are
being monitored, then there will be a greater tendency for them to
abide by safety rules.

In comparison with previous studies that have utilised computer
vision to identify hazards, our study has the following advantages:

• We provide an integrated semantic model that can be used for
training even when data is scarce. The unavailability of unsafe be-
haviour databases, especially for specific tasks, has hindered the
development of deep learning applications in construction. Our
approach not only relies on accurately detecting objects, but also the
use of the spatial relationship between objects to reason hazards.
Studies have demonstrated that prevailing computer-vision based
approaches have achieved a satisfying performance to detect a
variety of objects, which renders our semantic approach to be useful
[18–20]. Thus, we have combined graph database to model data
obtained from computer vision detection results to identify hazards,
which makes our approach useable without a specific database for
training; and

• The integrated approach is more generalizable than data training-
based approaches due to its excellent performance (i.e., high accu-
racy on object detection in the cross-database) on object detection.

Our knowledge-based graph uses the output (e.g., the location of a
person or a basket, computed by machine learning as the input of the

Table 2
Checklist of unsafe behaviour related to FFH.

Number Unsafe behaviour description

1 There should be no more than two people in a lift's basket
2 People should not walk on the support of excavation if there has no

guardrail
3 Edges of excavations (over 2 m deep) should be protected with a

guardrail
4 People should not stand on machinery when hoisting
5 People should wear a safety harness when working above a certain

height
6 It is not allowed to use car hopper to pick up people

Reference: NO0000087

Hazard level

Site location

Hazard description
adjacent edges and other protections
do not meet requirements

Reporter Time

Hazard location

Hazard category

Metro line number

Site picture

Action for preventing safety incidents

Response

Due date for the actionResponsible person

Organization

Fig. 8. A web-based safety hazard management system.

W. Fang, et al. Automation in Construction 119 (2020) 103310

7



Table 3
Concept identification of hazard information in FFH.

Number Images of hazards Description of hazards Hazard entity Activity type Location Attribute Relationship

1 There should be no more than two
people in a lift's basket

People, lift basket Stand Number,
coordinate

Overlapped/
Within

2 People should not walk on the
support of excavation if there has no
guardrail

People, support,
excavation, guardrail

Stand coordinate Touch/overlap

3 Edges of excavations (over 2 m
deep) should be protected with a
guardrail

People, excavation,
over 2 m,

stand Coordinate Near/overlap

4 people should not stand on
machinery when hoisting

People, machinery Stand Coordinate Overlap/within

5 People should wear a safety harness
when working above a certain
height

People, safety harness Wear Working at
heights

Coordinate Overlap/within

6 There should not use car hopper to
pick up people

People, car hopper Pick-up Coordinate Within/overlap

(a) Input image
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graph database (Neo4j)) to detect hazards. The knowledge graph can
detect hazards which single computer-vision algorithms unable to do
due the complexity of the rules that neeed to be considered to define
them. Improving the accuracy of computer vision algorithms and de-
termining how to extract knowledge (i.e., entity detection) has not been
the focus of our paper. Instead, we have built on the previous work of
Fang et al. [20] who used deep learning to detect FFH with a Mask R-
CNN approach. As a result there was no requirement to develop new
algorithms. We acknowledge an array of robust vision-based algorithms
are available, but undertaking a comparison between them, however, is
outside the remit of this paper.

6. Limitation

Despite the novelty of the research presented, we need to ac-
knowledge that it has several limitations. Firstly, our research relied on
distance and coordinate information to extract spatial relationship for
reasoning hazards. Many hazards comprise safety rules with specific
features. For example, due to the presence of apanage management,
persons on-site may be prohibited from entering a specific working
area. In this case, computer vision cannot be used to extract the attri-
butes and individuals and the area where they are performing their
tasks. Our future work will need to integrate other technologies such as
Radio Frequency Identification, to extract additional information to
address this limitation, (e.g., identity).

Secondly, our research extracts the coordinates and the distance
between objects from 2D images and then obtains spatial-relationship
following the information obtained (i.e., coordinate, distance). Mistakes
can be made when using the transformation matrix to compute the
distance of objects from single images. Therefore, we suggest that fu-
ture research will need to use stereo cameras to collect data and com-
pute depth information to improve the accuracy of calculating spatial
relationships.

Thirdly, our research solely considers the attribute (i.e., the distance
between entities) in an as-built ontological model to determine whether
hazards with complex rules are identifiable. A hazard is determined by
combinations of semantic information (i.e., activity, time, and loca-
tion). For example, an individual is not allowed to approach the
working area of a piece of machinery. In this case, we should detect the
machinery's working status (static or moving). We suggest that our
approach can be expanded with consideration of other semantic in-
formation according to the as-built ontological model.

Fourthly we should acknowledge there have been a limited number
of examples that have been able to integrate computer vision with
ontology to identify hazards as data is scarce. Thus, our future research
will focus on creating a database with a significant number of images in
order further validate and improve the reliability of our proposed ap-
proach.

Finally, we have also assumed that Mask R-CNN can accurately
detect a variety of objects. However, if an object is occluded or there are
unavailable images in the database for training, then the error rate for
object detection may be high. We, therefore, intend to integrate on-
tology with the object's features to identify them in the future. For
example, if an object partly occludes an individual, we may infer their
presence using other features, such as shape, size, colour, and clothes.

7. Conclusion

We have introduced a novel semantic model that integrates com-
puter vision and ontology to identify hazards from images auto-
matically. We utilised the following tools to develop our model: (1)
computer vision algorithms, which were used to extract implied
knowledge from images (i.e., objects detection and attributes extrac-
tion); and (2) ontological reasoning to identify unsafe conditions based
on their identified distance and spatial information. To validate our
approach, we created a database of individuals unsafe behaviour

related to FFH from several construction sites. We reveal that our se-
mantic model can accurately recognise hazards from images with
complex rules. We also suggest that our proposed semantic model can
be used by site management to automatically identify potential hazards
and therefore put in place strategies to mitigate potential injuries and
accidents.

Our future research will focus on (1) combining temporal and spa-
tial information to identify hazards from video streaming; (2) using
stereo a camera to collect data, and then compute the 3D depth in-
formation from stereo videos; (3) combining other information tech-
niques and computer vision to extract additional features, such as, the
size of foundation, and colour of a hardhat, to identify additional ha-
zard types; and (4) expanding our approach to integrate semantic in-
formation in accordance to our as-built ontological model.
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